Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2320397

ABSTRACT

We have previously published research on the anti-viral properties of an alkaloid mixture extracted from Nuphar lutea, the major components of the partially purified mixture found by NMR analysis. These are mostly dimeric sesquiterpene thioalkaloids called thiobinupharidines and thiobinuphlutidines against the negative strand RNA measles virus (MV). We have previously reported that this extract inhibits the MV as well as its ability to downregulate several MV proteins in persistently MV-infected cells, especially the P (phospho)-protein. Based on our observation that the Nuphar extract is effective in vitro against the MV, and the immediate need that the coronavirus disease 2019 (COVID-19) pandemic created, we tested here the ability of 6,6'-dihydroxythiobinupharidine DTBN, an active small molecule, isolated from the Nuphar lutea extract, on COVID-19. As shown here, DTBN effectively inhibits SARS-CoV-2 production in Vero E6 cells at non-cytotoxic concentrations. The short-term daily administration of DTBN to infected mice delayed the occurrence of severe clinical outcomes, lowered virus levels in the lungs and improved survival with minimal changes in lung histology. The viral load on lungs was significantly reduced in the treated mice. DTBN is a pleiotropic small molecule with multiple targets. Its anti-inflammatory properties affect a variety of pathogens including SARS-CoV-2 as shown here. Its activity appears to target both pathogen specific (as suggested by docking analysis) as well as cellular proteins, such as NF-κB, PKCs, cathepsins and topoisomerase 2, that we have previously identified in our work. Thus, this combined double action of virus inhibition and anti-inflammatory activity may enhance the overall effectivity of DTBN. The promising results from this proof-of-concept in vitro and in vivo preclinical study should encourage future studies to optimize the use of DTBN and/or its molecular derivatives against this and other related viruses.


Subject(s)
Alkaloids , COVID-19 , Nuphar , Mice , Animals , SARS-CoV-2 , Nuphar/chemistry , Alkaloids/pharmacology , Alkaloids/therapeutic use , Alkaloids/chemistry , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice, Transgenic
2.
Comput Biol Chem ; 104: 107768, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2307075

ABSTRACT

Nucleoside analogs/derivatives (NAs/NDs) with potent antiviral activities are now deemed very convenient choices for the treatment of coronavirus disease 2019 (COVID-19) arisen by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. At the same time, the appearance of a new strain of SARS-CoV-2, the Omicron variant, necessitates multiplied efforts in fighting COVID-19. Counteracting the crucial SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) jointly altogether using the same inhibitor is a quite successful new plan to demultiplicate SARS-CoV-2 particles and eliminate COVID-19 whatever the SARS-CoV-2 subtype is (due to the significant conservation nature of RdRps and ExoNs in the different SARS-CoV-2 strains). Successive in silico screening of known NAs finally disclosed six different promising NAs, which are riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir, respectively, that predictably can act through the planned dual-action mode. Further in vitro evaluations affirmed the anti-SARS-CoV-2/anti-COVID-19 potentials of these NAs, with riboprine and forodesine being at the top. The two NAs are able to effectively antagonize the replication of the new virulent SARS-CoV-2 strains with considerably minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 189 and 408 nM for riboprine and 207 and 657 nM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. Furthermore, the favorable structural characteristics of the two molecules qualify them for varied types of isosteric and analogistic chemical derivatization. In one word, the present important outcomes of this comprehensive dual study revealed the anticipating repurposing potentials of some known nucleosides, led by the two NAs riboprine and forodesine, to successfully discontinue the coronaviral-2 polymerase/exoribonuclease interactions with RNA nucleotides in the SARS-CoV-2 Omicron variant (BA.5 sublineage) and accordingly alleviate COVID-19 infections, motivating us to initiate the two drugs' diverse anti-COVID-19 pharmacological evaluations to add both of them betimes in the COVID-19 therapeutic protocols.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Nucleosides/pharmacology , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
3.
Letters in Applied NanoBioScience ; 12(1), 2023.
Article in English | Scopus | ID: covidwho-2302181

ABSTRACT

Unfortunately, the coronavirus disease 2019 (COVID-19) pandemic has become an irritating universal crisis. Thus, the discovery/identification of prospective drug candidates to disband the branched health issues caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become urgent. This current research sheds light on the repositioning possibility of the potent antirheumatic drug teriflunomide to act as an efficient anti-SARS-CoV-2/anti-COVID-19 remedy. Herein, a motivating in silico molecular docking/modeling study of teriflunomide explores its potential inhibitory actions on the novel coronaviral-2 RNA-dependent RNA polymerase (nCoV-RdRp) enzyme/protein was reported. Interestingly, the computational analysis of the teriflunomide superior inhibitory binding mode in the binding cavity of one of the active sites of the nCoV-RdRp detected that teriflunomide molecule shows considerably stronger inhibitory binding interactions and better inhibitory binding affinities (it shows lower binding energies which reached-9.70 kcal/mol) than both used references. It was reported that teriflunomide potently impairs viral replication/reproduction by employing two distinct action mechanisms. Thus, the existing study's findings surprisingly uphold teriflunomide's double mode of action. In conclusion, the presented research work paves the way to biologically and clinically begin exploring the promising properties of teriflunomide to strongly hit the SARS-CoV-2 particles of the different strains and inhibit their pathogenic replication in an integrative triple mode of action. Hopingly, the potential sextet COVID-19 attacker teriflunomide can be rapidly subjected to the various in vitro/in vivo/clinical anti-COVID-19 assays/trials in a serious attempt to assess its comprehensive bioactivities against COVID-19 to be effectively used in SARS-CoV-2 infections therapy soon. © 2022 by the authors.

4.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2304130

ABSTRACT

The development of potent non-nucleoside inhibitors (NNIs) could be an alternate strategy to combating infectious bovine viral diarrhea virus (BVDV), other than the traditional vaccination. RNA-dependent RNA polymerase (RdRp) is an essential enzyme for viral replication; therefore, it is one of the primary targets for countermeasures against infectious diseases. The reported NNIs, belonging to the classes of quinolines (2h: imidazo[4,5-g]quinolines and 5m: pyrido[2,3-g] quinoxalines), displayed activity in cell-based and enzyme-based assays. Nevertheless, the RdRp binding site and microscopic mechanistic action are still elusive, and can be explored at a molecular level. Here, we employed a varied computational arsenal, including conventional and accelerated methods, to identify quinoline compounds' most likely binding sites. Our study revealed A392 and I261 as the mutations that can render RdRp resistant against quinoline compounds. In particular, for ligand 2h, mutation of A392E is the most probable mutation. The loop L1 and linker of the fingertip is recognized as a pivotal structural determinant for the stability and escape of quinoline compounds. Overall, this work demonstrates that the quinoline inhibitors bind at the template entrance channel, which is governed by conformational dynamics of interactions with loops and linker residues, and reveals structural and mechanistic insights into inhibition phenomena, for the discovery of improved antivirals.

5.
Infektsionnye Bolezni ; 20(3):104-112, 2022.
Article in Russian | EMBASE | ID: covidwho-2274927

ABSTRACT

The aim of this study was to analyze the efficacy and safety of using etiotropic therapy with favipiravir and molnupiravir that can selectively bind and inhibit not only SARS-CoV-2 proteins but also other RNA-containing pathogens of acute respiratory diseases. High transmission of pathogens, the risk of becoming chronic, frequent complications, cases of co-infection with several pathogens, which can lead to a more severe course of the disease, insufficient vaccination effectiveness, all this requires additional strategies for both prevention and treatment of acute respiratory viral infections. RNA-dependent RNA polymerase (RdRp), which has no equivalent in human cells, is involved in RNA synthesis and is an excellent therapeutic target for diseases caused by RNA viruses, including SARS-CoV-2. The long process of drug development and the "reuse" of drugs approved for other indications or successfully tested in terms of safety and tolerability pose the challenge of rapid establishment of an effective drug, including for the treatment of severe cases of COVID-19.Copyright © 2022, Dynasty Publishing House.

6.
J Biomol Struct Dyn ; : 1-19, 2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-2280919

ABSTRACT

For coronaviruses, RNA-dependent RNA polymerase (RdRp) is an essential enzyme that catalyses the replication from RNA template and therefore remains an attractive therapeutic target for anti-COVID drug discovery. In the present study, we performed a comprehensive in silico screening for 16,776 potential molecules from recently established drug libraries based on two important pharmacophores (3-amino-4-phenylbutan-2-ol and piperazine). Based on initial assessment, 4042 molecules were obtained suitable as drug candidates, which were following Lipinski's rule. Molecular docking implemented for the analysis of molecular interactions narrowed this number of compounds down to 19. Subsequent to screening filtering criteria and considering the critical parameters viz. docking score and MM-GBSA binding free energy, 1-(4-((2S,3S)-3-amino-2-hydroxy-4-phenylbutyl)piperazin-1-yl)-3-phenylurea (compound 1) was accomplished to score highest in comparison to the remaining 18 shortlisted drug candidates. Notably, compound 1 displayed higher docking score (-8.069 kcal/mol) and MM-GBSA binding free energy (-49.56 kcal/mol) than the control drug, remdesivir triphosphate, the active form of remdesivir as well as adenosine triphosphate. Furthermore, a molecular dynamics simulation was carried out (100 ns), which substantiated the candidacy of compound 1 as better inhibitor. Overall, our systematic in silico study predicts the potential of compound 1 to exhibit a more favourable specific activity than remdesivir triphosphate. Hence, we suggest compound 1 as a novel potential drug candidate, which should be considered for further exploration and validation of its potential against SARS-CoV-2 in wet lab experimental studies.Communicated by Ramasawamy H. Sarma.

7.
J Diet Suppl ; : 1-30, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-2273537

ABSTRACT

The emergence of fast-spreading SARS-CoV-2 mutants has sparked a new phase of COVID-19 pandemic. There is a dire necessity for antivirals targeting highly conserved genomic domains on SARS-CoV-2 that are less prone to mutation. The nsp12, also known as the RNA-dependent RNA-polymerase (RdRp), the core component of 'SARS-CoV-2 replication-transcription complex', is a potential well-conserved druggable antiviral target. Several FDA-approved RdRp 'nucleotide analog inhibitors (NAIs)' such as remdesivir, have been repurposed to treat COVID-19 infections. The NAIs target RdRp protein translation and competitively block the nucleotide insertion into the RNA chain, resulting in the inhibition of viral replication. However, the replication proofreading function of nsp14-ExoN could provide resistance to SARS-CoV-2 against many NAIs. Conversely, the 'non-nucleoside analog inhibitors (NNAIs)' bind to allosteric sites on viral polymerase surface, change the redox state; thereby, exert antiviral activity by altering interactions between the enzyme substrate and active core catalytic site of the RdRp. NNAIs neither require metabolic activation (unlike NAIs) nor compete with intracellular pool of nucleotide triphosphates (NTPs) for anti-RdRp activity. The NNAIs from phytonutrient origin are potential antiviral candidates compared to their synthetic counterparts. Several in-silico studies reported the antiviral spectrum of natural phytonutrient-NNAIs such as Suramin, Silibinin (flavonolignan), Theaflavin (tea polyphenol), Baicalein (5,6,7-trihydroxyflavone), Corilagin (gallotannin), Hesperidin (citrus bioflavonoid), Lycorine (pyrrolidine alkaloid), with superior redox characteristics (free binding energy, hydrogen-bonds, etc.) than antiviral drugs (i.e. remdesivir, favipiravir). These phytonutrient-NNAIs also exert anti-inflammatory, antioxidant, immunomodulatory and cardioprotective functions, with multifunctional therapeutic benefits in the clinical management of COVID-19.

8.
Comput Struct Biotechnol J ; 19: 3339-3348, 2021.
Article in English | MEDLINE | ID: covidwho-2269594

ABSTRACT

Designing antiviral therapeutics is of great concern per current pandemics caused by novel coronavirus or SARS-CoV-2. The core polymerase enzyme in the viral replication/transcription machinery is generally conserved and serves well for drug target. In this work we briefly review structural biology and computational clues on representative single-subunit viral polymerases that are more or less connected with SARS-CoV-2 RNA dependent RNA polymerase (RdRp), in particular, to elucidate how nucleotide substrates and potential drug analogs are selected in the viral genome synthesis. To do that, we first survey two well studied RdRps from Polio virus and hepatitis C virus in regard to structural motifs and key residues that have been identified for the nucleotide selectivity. Then we focus on related structural and biochemical characteristics discovered for the SARS-CoV-2 RdRp. To further compare, we summarize what we have learned computationally from phage T7 RNA polymerase (RNAP) on its stepwise nucleotide selectivity, and extend discussion to a structurally similar human mitochondria RNAP, which deserves special attention as it cannot be adversely affected by antiviral treatments. We also include viral phi29 DNA polymerase for comparison, which has both helicase and proofreading activities on top of nucleotide selectivity for replication fidelity control. The helicase and proofreading functions are achieved by protein components in addition to RdRp in the coronavirus replication-transcription machine, with the proofreading strategy important for the fidelity control in synthesizing a comparatively large viral genome.

9.
Infektsionnye Bolezni ; 20(3):104-112, 2022.
Article in Russian | EMBASE | ID: covidwho-2233983

ABSTRACT

The aim of this study was to analyze the efficacy and safety of using etiotropic therapy with favipiravir and molnupiravir that can selectively bind and inhibit not only SARS-CoV-2 proteins but also other RNA-containing pathogens of acute respiratory diseases. High transmission of pathogens, the risk of becoming chronic, frequent complications, cases of co-infection with several pathogens, which can lead to a more severe course of the disease, insufficient vaccination effectiveness, all this requires additional strategies for both prevention and treatment of acute respiratory viral infections. RNA-dependent RNA polymerase (RdRp), which has no equivalent in human cells, is involved in RNA synthesis and is an excellent therapeutic target for diseases caused by RNA viruses, including SARS-CoV-2. The long process of drug development and the "reuse" of drugs approved for other indications or successfully tested in terms of safety and tolerability pose the challenge of rapid establishment of an effective drug, including for the treatment of severe cases of COVID-19. Copyright © 2022, Dynasty Publishing House.

10.
J Med Virol ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2233227

ABSTRACT

SARS-CoV-2 NSP12, the viral RNA-dependent RNA polymerase (RdRp), is required for viral replication and is a therapeutic target to treat COVID-19. To facilitate research on SARS-CoV-2 NSP12 protein, we developed a rat monoclonal antibody (CM12.1) against the NSP12 N-terminus that can facilitate functional studies. Immunoblotting and immunofluorescence assay (IFA) confirmed the specific detection of NSP12 protein by this antibody for cells overexpressing the protein. Although NSP12 is generated from the ORF1ab polyprotein, IFA of human autopsy COVID-19 lung samples revealed NSP12 expression in only a small fraction of lung cells including goblet, club-like, vascular endothelial cells, and a range of immune cells, despite wide-spread tissue expression of spike protein antigen. Similar studies using in vitro infection also generated scant protein detection in cells with established virus replication. These results suggest that NSP12 may have diminished steady-state expression or extensive posttranslation modifications that limit antibody reactivity during SARS-CoV-2 replication.

11.
Infektsionnye Bolezni ; 20(3):104-112, 2022.
Article in Russian | EMBASE | ID: covidwho-2217851

ABSTRACT

The aim of this study was to analyze the efficacy and safety of using etiotropic therapy with favipiravir and molnupiravir that can selectively bind and inhibit not only SARS-CoV-2 proteins but also other RNA-containing pathogens of acute respiratory diseases. High transmission of pathogens, the risk of becoming chronic, frequent complications, cases of co-infection with several pathogens, which can lead to a more severe course of the disease, insufficient vaccination effectiveness, all this requires additional strategies for both prevention and treatment of acute respiratory viral infections. RNA-dependent RNA polymerase (RdRp), which has no equivalent in human cells, is involved in RNA synthesis and is an excellent therapeutic target for diseases caused by RNA viruses, including SARS-CoV-2. The long process of drug development and the "reuse" of drugs approved for other indications or successfully tested in terms of safety and tolerability pose the challenge of rapid establishment of an effective drug, including for the treatment of severe cases of COVID-19. Copyright © 2022, Dynasty Publishing House.

12.
Adv Redox Res ; : 100064, 2023 Jan 26.
Article in English | MEDLINE | ID: covidwho-2209810

ABSTRACT

Currently, nitrogen-containing heterocyclic virucides take the lead as top options for treating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their escorting disease, the coronavirus disease 2019 (COVID-19). But unfortunately, the sudden emergence of a new strain of SARS-CoV-2, the Omicron variant and its lineages, complicated matters in the incessant COVID-19 battle. Goaling the two paramount coronaviral-2 multiplication enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) at synchronous times using single ligand is a quite effective new binary avenue to restrain SARS-CoV-2 reproduction and cease COVID-19 progression irrespective of the SARS-CoV-2 strain type, as RdRps and ExoNs are vastly conserved in all SARS-CoV-2 strains. The presented in-silico/in-vitro research winnowed our own small libraries of antioxidant nitrogenous heterocyclic compounds, inspecting for the utmost convenient drug candidates expectedly capable of effectively working through this dual tactic. Computational screening afforded three promising compounds of the antioxidant 1,3,4-thiadiazole class, which were named ChloViD2022, Taroxaz-26, and CoViTris2022. Subsequent biological examination, employing the in-vitro anti-RdRp/anti-ExoN and anti-SARS-CoV-2 assays, exclusively demonstrated that ChloViD2022, CoViTris2022, and Taroxaz-26 could efficiently block the replication of the new lineages of SARS-CoV-2 with considerably minute anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.18 and 0.44 µM for ChloViD2022, 0.22 and 0.72 µM for CoViTris2022, and 0.25 and 0.78 µM for Taroxaz-26, in the order, overtaking the standard anti-SARS-CoV-2 drug molnupiravir. These biochemical findings were optimally presupported by the results of the prior in-silico screening, suggesting that the three compounds might potently hit the catalytic active sites of the virus's RdRp and ExoN enzymes. Furthermore, the perfect pharmacophoric features of ChloViD2022, Taroxaz-26, and CoViTris2022 molecules make them typical dual inhibitors of SARS-CoV-2 replication and proofreading, with their relatively flexible structures eligible for diverse forms of chemical modification. In sum, the current important results of this thorough research work exposed the interesting repurposing potential of the three 2-amino-1,3,4-thiadiazole ligands, ChloViD2022, Taroxaz-26, and CoViTris2022, to effectively conflict with the vital biointeractions between the coronavirus's polymerase/exoribonuclease and the four essential RNA nucleotides, and, accordingly, arrest COVID-19 disease, persuading the relevant investigators to quickly begin the three agents' comprehensive preclinical and clinical anti-COVID-19 assessments.

13.
Mol Biotechnol ; 2023 Jan 24.
Article in English | MEDLINE | ID: covidwho-2209534

ABSTRACT

Recently, natural and synthetic nitrogenous heterocyclic antivirals topped the scene as first choices for the treatment of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their accompanying disease, the coronavirus disease 2019 (COVID-19). Meanwhile, the mysterious evolution of a new strain of SARS-CoV-2, the Omicron variant and its sublineages, caused a new defiance in the continual COVID-19 battle. Hitting the two principal coronaviral-2 multiplication enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) synchronously using the same ligand is a highly effective novel dual pathway to hinder SARS-CoV-2 reproduction and stop COVID-19 progression irrespective of the SARS-CoV-2 variant type since RdRps and ExoNs are widely conserved among all SARS-CoV-2 strains. Herein, the present computational/biological study screened our previous small libraries of nitrogenous heterocyclic compounds, searching for the most ideal drug candidates predictably able to efficiently act through this double approach. Theoretical filtration gave rise to three promising antioxidant nitrogenous heterocyclic compounds of the 1,3,4-thiadiazole type, which are CoViTris2022, Taroxaz-26, and ChloViD2022. Further experimental evaluation proved for the first time, utilizing the in vitro anti-RdRp/ExoN and anti-SARS-CoV-2 bioassays, that ChloViD2022, CoViTris2022, and Taroxaz-26 could effectively inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 0.17 and 0.41 µM for ChloViD2022, 0.21 and 0.69 µM for CoViTris2022, and 0.23 and 0.73 µM for Taroxaz-26, respectively, transcending the anti-COVID-19 drug molnupiravir. The preliminary in silico outcomes greatly supported these biochemical results, proposing that the three molecules potently strike the key catalytic pockets of the SARS-CoV-2 (Omicron variant) RdRp's and ExoN's vital active sites. Moreover, the idealistic pharmacophoric hallmarks of CoViTris2022, Taroxaz-26, and ChloViD2022 molecules relatively make them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading, with their highly flexible structures open for various kinds of chemical derivatization. To cut it short, the present pivotal findings of this comprehensive work disclosed the promising repositioning potentials of the three 2-aminothiadiazoles, CoViTris2022, Taroxaz-26, and ChloViD2022, to successfully interfere with the crucial biological interactions of the coronaviral-2 polymerase/exoribonuclease with the four principal RNA nucleotides, and, as a result, cure COVID-19 infection, encouraging us to rapidly start the three drugs' broad preclinical/clinical anti-COVID-19 evaluations. Dual SARS-CoV-2 polymerase (RdRp) and exoribonuclease (ExoN) inhibition via nucleoside mimicry is a very effective novel approach for COVID-19 infection therapy. Hydroxylated nitrogenous heterocyclic compounds are currently considered first choices in COVID-19 therapy. Extensive computational investigations disclosed three synthetic 5-substituted-2-amino-1,3,4-thiadiazoles, CoViTris2022, Taroxaz-26, and ChloViD2022, with ideal anti-RdRp/ExoN features. ChloViD2022 was ranked the top among the three NAs, with biochemical anti-RdRp EC50 value of 0.17 µM. ChloViD2022 accordingly displayed excellent anti-SARS-CoV-2 EC50 value of 0.41 µM against the Omicron variant.

14.
3 Biotech ; 13(1): 12, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2175206

ABSTRACT

Vaccines are used as one of the major weapons for the eradication of pandemic. However, the rise of different variants of the SARS-CoV-2 virus is creating doubts regarding the end of the pandemic. Hence, there is an urgent need to develop more drug candidates which can be useful for the treatment of COVID-19. In the present research for the scientific hypothesis, emphasis was given on the direct antiviral therapy available for the treatment of COVID-19. In lieu of this, the available molecular targets which include Severe Acute Respiratory Syndrome Chymotrypsin-like Protease (SARS-3CLpro), Papain-Like Cysteine Protease (PLpro), and RNA-Dependent RNA Polymerase (RdRp) were explored. As per the current scientific reports and literature, among all the available molecular targets, RNA-Dependent RNA Polymerase (RdRp) was found to be a crucial molecular target for the treatment of COVID-19. Most of the inhibitors which are reported against this target consisted of the free amine group and carbonyl group which might be playing an important role in the binding interaction with the RdRp protein. Among all the reported RdRp inhibitors, remdesivir, favipiravir, and molnupiravir were found to be the most promising drugs against COVID-19. Overall, the structural features of this RNA-Dependent RNA Polymerase (RdRp) inhibitors proved the importance of pyrrolo-triazine and pyrimidine scaffolds. Previous computational models of these drug molecules indicated that substitution with the polar functional group, hydrogen bond donor, and electronegative atoms on these scaffolds may increase the activity against the RdRp protein. Hence, in line with the proposed hypothesis, in the present research work for the evaluation of the hypothesis, new molecules were designed from the pyrrolo-triazine and pyrimidine scaffolds. Further, molecular docking and MD simulation studies were performed with these designed molecules. All these designed molecules (DM-1, DM-2, and DM-3) showed the results as per the proposed hypothesis. Among all the designed molecules, DM-1 showed promising results against the RdRp protein of SARS-CoV-2. In the future, these structural features can be used for the development of new RdRp inhibitors with improved activity. Also, in the future lead compound DM-1 can be explored against the RdRp protein for the treatment of COVID-19.

15.
Med Chem Res ; 32(2): 326-341, 2023.
Article in English | MEDLINE | ID: covidwho-2173976

ABSTRACT

Mysterious evolution of a new strain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the Omicron variant, led to a new challenge in the persistent coronavirus disease 2019 (COVID-19) battle. Objecting the conserved SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) together using one ligand is a successful new tactic to stop SARS-CoV-2 multiplication and COVID-19 progression. The current comprehensive study investigated most nucleoside analogs (NAs) libraries, searching for the most ideal drug candidates expectedly able to act through this double tactic. Gradual computational filtration afforded six different promising NAs, riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir. Further biological assessment proved that riboprine and forodesine are able to powerfully inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.21 and 0.45 µM for riboprine and about 0.23 and 0.70 µM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. These biochemical findings were supported by the prior in silico data. Additionally, the ideal pharmacophoric features of riboprine and forodesine molecules render them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading. These findings suggest that riboprine and forodesine could serve as prospective lead compounds against COVID-19. Graphical abstract.

16.
ChemistrySelect ; 7(46): e202201912, 2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2157915

ABSTRACT

Given the rapid progression of the coronavirus disease 2019 (COVID-19) pandemic, an ultrafast response was urgently required to handle this major public crisis. To contain the pandemic, investments are required to develop diagnostic tests, prophylactic vaccines, and novel therapies. Lately, nucleoside analog (NA) antivirals topped the scene as top options for the treatment of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Meanwhile, the continuous generation of new lineages of the SARS-CoV-2 Omicron variant caused a new challenge in the persistent COVID-19 battle. Hitting the two crucial SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) collectively together using only one single ligand is a very successful new approach to stop SARS-CoV-2 multiplication and combat COVID-19 irrespective of the SARS-CoV-2 variant type because RdRps and ExoNs are broadly conserved among all SARS-CoV-2 strains. Herein, the current comprehensive study investigated most NAs libraries, searching for the most ideal drug candidates expectedly able to perfectly act through this double tactic. Gradual computational filtration gave rise to six different promising NAs, which are riboprine, forodesine, tecadenoson, nelarabine, vidarabine, and maribavir, respectively. Further biological assessment proved for the first time, using the in vitro anti-RdRp/ExoN and anti-SARS-CoV-2 bioassays, that riboprine and forodesine, among all the six tested NAs, are able to powerfully inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.22 and 0.49 µM for riboprine and about 0.25 and 0.73 µM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. The prior in silico data supported these biochemical findings, suggesting that riboprine and forodesine molecules strongly hit the key catalytic pockets of the SARS-CoV-2 (Omicron variant) RdRp's and ExoN's main active sites. Additionally, the ideal pharmacophoric features of riboprine and forodesine molecules render them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading, with their relatively flexible structures open for diverse types of chemical derivatization. In Brief, the current important results of this comprehensive study revealed the interesting repurposing potentials of, mainly, the two nucleosides riboprine and forodesine to effectively shut down the polymerase/exoribonuclease-RNA nucleotides interactions of the SARS-CoV-2 Omicron variant and consequently treat COVID-19 infections, motivating us to rapidly begin the two drugs' broad preclinical/clinical anti-COVID-19 bioevaluations, hoping to combine both drugs soon in the COVID-19 treatment protocols.

17.
Front Chem ; 10: 964446, 2022.
Article in English | MEDLINE | ID: covidwho-2089818

ABSTRACT

SARS-CoV-2 triggered a worldwide medical crisis, affecting the world's social, emotional, physical, and economic equilibrium. However, treatment choices and targets for finding a solution to COVID-19's threat are becoming limited. A viable approach to combating the threat of COVID-19 is by unraveling newer pharmacological and therapeutic targets pertinent in the viral survival and adaptive mechanisms within the host biological milieu which in turn provides the opportunity to discover promising inhibitors against COVID-19. Therefore, using high-throughput virtual screening, manually curated compounds library from some medicinal plants were screened against four main drivers of SARS-CoV-2 (spike glycoprotein, PLpro, 3CLpro, and RdRp). In addition, molecular docking, Prime MM/GBSA (molecular mechanics/generalized Born surface area) analysis, molecular dynamics (MD) simulation, and drug-likeness screening were performed to identify potential phytodrugs candidates for COVID-19 treatment. In support of these approaches, we used a series of computational modeling approaches to develop therapeutic agents against COVID-19. Out of the screened compounds against the selected SARS-CoV-2 therapeutic targets, only compounds with no violations of Lipinski's rule of five and high binding affinity were considered as potential anti-COVID-19 drugs. However, lonchocarpol A, diplacol, and broussonol E (lead compounds) were recorded as the best compounds that satisfied this requirement, and they demonstrated their highest binding affinity against 3CLpro. Therefore, the 3CLpro target and the three lead compounds were selected for further analysis. Through protein-ligand mapping and interaction profiling, the three lead compounds formed essential interactions such as hydrogen bonds and hydrophobic interactions with amino acid residues at the binding pocket of 3CLpro. The key amino acid residues at the 3CLpro active site participating in the hydrophobic and polar inter/intra molecular interaction were TYR54, PRO52, CYS44, MET49, MET165, CYS145, HIS41, THR26, THR25, GLN189, and THR190. The compounds demonstrated stable protein-ligand complexes in the active site of the target (3CLpro) over a 100 ns simulation period with stable protein-ligand trajectories. Drug-likeness screening shows that the compounds are druggable molecules, and the toxicity descriptors established that the compounds demonstrated a good biosafety profile. Furthermore, the compounds were chemically reactive with promising molecular electron potential properties. Collectively, we propose that the discovered lead compounds may open the way for establishing phytodrugs to manage COVID-19 pandemics and new chemical libraries to prevent COVID-19 entry into the host based on the findings of this computational investigation.

18.
Drugs Today (Barc) ; 58(7): 335-350, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1951495

ABSTRACT

Molnupiravir (MK-4482, EIDD-2801) is a promising broad-spectrum experimental antiviral developed by Merck & Co. It is a nucleoside analogue prodrug that undergoes rapid conversion into nucleoside triphosphate (NTP) by intracellular metabolic processes. NTP inhibits viral polymerase by acting as an alternative substrate. Molnupiravir was initially developed to treat influenza and Venezuelan equine encephalitis virus (VEEV) infection as it exerts its antiviral activity by inhibiting RNA-dependent RNA polymerase (RdRp). Currently, it is being developed for the treatment of SARS-CoV-2 infection. Molnupiravir has demonstrated potent in vitro antiviral activity against positive-sense RNA viruses including influenza viruses, SARS-CoV, SARS-CoV-2 and MERS-CoV with low cytotoxicity and a high resistance barrier. Molnupiravir has been evaluated in phase I, II and III trials where it has demonstrated good efficacy, dose-dependent pharmacokinetics and a sound safety profile. In an interim analysis of a phase III study, treatment with molnupiravir reduced the risk of hospitalization or death by 50% in patients with COVID-19; in the final analysis, the reduction was 30%. On the basis of positive results in clinical trials, molnupiravir has been authorized for emergency use by the U.K. Medicines and Healthcare products Regulatory Agency (MHRA) and the U.S. Food and Drug Administration (FDA) in adults with mild to moderate COVID-19.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/adverse effects , Cytidine/analogs & derivatives , Humans , Hydroxylamines , SARS-CoV-2 , United States
19.
Life (Basel) ; 12(6)2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1911448

ABSTRACT

In an effort to identify functional-energetic correlations leading to the development of efficient anti-SARS-CoV-2 therapeutic agents, we have designed synthetic analogs of aurintricarboxylic acid (ATA), a heterogeneous polymeric mixture of structurally related linear homologs known to exhibit a host of biological properties, including antiviral activity. These derivatives are evaluated for their ability to interact with a plasma transporter protein (human serum albumin), eukaryotic (yeast) ribosomes, and a SARS-CoV-2 target, the RNA-dependent RNA polymerase (RdRp). The resultant data are critical for characterizing drug distribution, bioavailability, and effective inhibition of host and viral targets. Promising lead compounds are selected on the basis of their binding energetics which have been characterized and correlated with functional activities as assessed by inhibition of RNA replication and protein synthesis. Our results reveal that the activity of heterogeneous ATA is mimicked by linear compounds of defined molecular weight, with a dichlorohexamer salicylic-acid derivative exhibiting the highest potency. These findings are instrumental for optimizing the design of structurally defined ATA analogs that fulfill the requirements of an antiviral drug with respect to bioavailability, homogeneity, and potency, thereby expanding the arsenal of therapeutic regimens that are currently available to address the urgent need for effective SARS-CoV-2 treatment strategies.

20.
Chem Zvesti ; 75(9): 4669-4685, 2021.
Article in English | MEDLINE | ID: covidwho-1877948

ABSTRACT

Abstract: Specific inhibition of the viral RNA-dependent RNA polymerase (RdRp) of the newly-emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a very promising strategy for developing highly potent medicines for coronavirus disease 2019 (COVID-19). However, almost all of the reported viral RdRp inhibitors (either repurposed drugs or new antiviral agents) lack selectivity against the SARS-CoV-2 RdRp. Herein, I discovered a new favipiravir derivative, (E)-N-(4-cyanobenzylidene)-6-fluoro-3-hydroxypyrazine-2-carboxamide (cyanorona-20), as the first potent SARS-CoV-2 inhibitor with very high selectivity (209- and 45-fold more potent than favipiravir and remdesivir, respectively). Based on the significant reduction in the in vitro SARS-CoV-2 replication/copies, strong computational cyanorona-20 ligand-RdRp protein interactions, and anti-RdRp activity of the parent favipiravir drug, SARS-CoV-2 inhibition is thought to be mediated through the coronaviral-2 RdRp inhibition. This promising selective anti-COVID-19 compound is also, to the best of our knowledge, the first bioactive derivative of favipiravir, the known antiinfluenza and antiviral drug. This new nucleoside analog was designed, synthesized, characterized, computationally studied (through pharmacokinetic calculations along with computational molecular modeling and prediction), and biologically evaluated for its anti-COVID-19 activities (through a validated in vitro anti-COVID-19 assay). The results of the biological assay showed that cyanorona-20 surprisingly exhibited very significant anti-COVID-19 activity (anti-SARS-CoV-2 EC50 = 0.45 µM), and, in addition, it could be also a very promising lead compound for the design of new anti-COVID-19 agents. Cyanorona-20 is a new favipiravir derivative with promise for the treatment of SARS-CoV-2 infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-021-01640-9.

SELECTION OF CITATIONS
SEARCH DETAIL